

A Guide to DNA Assembly for Drug Discovery

Michael Smanski, Ph.D. Assistant Professor University of Minnesota

May 15, 2018

Leveraging DNA Assembly for Natural Product Biosynthesis

Mike Smanski University of Minnesota

May 15, 2018

Goals for the Webinar

- Introduction to key concepts in DNA assembly as it relates to engineering metabolic pathways
- Argument for the **importance of combinatorial DNA assembly** projects in natural product biosynthesis
- **Example application** to illustrate how DNA assembly methods were used to produce a valuable natural product scaffold
- New directions/questions that are important for pushing genetic engineering into more complex multi-part systems

"DNA Synthesis" versus "DNA Assembly"

DNA Synthesis: de novo construction of oligonucleotides and larger molecules from nucleotide monomers

DNA Assembly: combinatorial concatenation of presynthesized parts to produce functional genetic constructs

What do We Mean by "Genetic Parts"?

Genetic parts: a sequence of DNA that encodes a biological function or behavior. This can include information storage (*e.g.* CDS), transcription or translation control (*e.g.* promoter), etc. Genetic parts can be combined to make more complex functional units.

Nielsen AAK, Segall-Shapiro TH, Voigt CA Curr. Opin. Chem. Biol. (2013)

The iGEM Registry of Standard Biological Parts

Important Biological Capabilities Require Massively Multi-Part Genetic Systems

What are "Natural Products"

Natural Products are Privileged Structures for Drug Discovery

Newman & Cragg (2012) J. Nat. Prod. 75:311-335

Bleomycin (Blenoxane[®])

Heterologous Production of Natural Products

Drug Discovery Pipelines Require Access to Hundreds of Grams of Material

Koehn and Carter (2005) Nat. Rev. Drug Disc. 4:206-220

• Gene expression changes upon host transfer

Smanski et al. Shen (2012) J. Nat. Prod. 75:2158-2167

- Gene expression changes upon host transfer
- Even conservative host changes can break a system

Robert G. Egbert, and Eric Klavins PNAS 2012;109:16817-16822

- Gene expression changes upon host transfer
- Even conservative host changes can break a system
- Permuting expression over multiple genes dramatically impacts system performance

cluster

56 or the asta is a second of a second secon $32 \circ \underline{\neg + - \circ} \circ \underline{\neg \circ} \circ \underline{\circ \circ} \circ \underline{\neg \circ} \circ \underline{\circ} \circ \underline{\circ}$

Activity OD₆₀₀ (% wild-type) 100 0 0.2 1.0

(**1**

H H н н • -. e 🛛 🗖 н н

•

i – H

i H

.

H.

• H

н н

е н

d 🛏

.

(D.

H

i 🕩

i 🕨

i H

Smanski et al. Voigt (2014) Nat. Biotechnol. 32:1241-1249

- Gene expression changes upon host transfer
- Even conservative host changes can break a system
- Permuting expression over multiple genes dramatically impacts system performance
- Optimal gene expression is nuanced and non-obvious

Ajikumar PK and Stephanopoulos G (2010) Science 330:70-74

Approach: Reconstructing Biosynthetic Gene Clusters from Parts

Natural gene cluster

Remove non-coding DNA
Eliminate non-essential genes
Remove transcription factors
Re-design CDSs

5. Clone/Synthesize genes 6. Add synthetic regulation 7. Organize into operons 8. Control with synthetic circuits

Advantages:

- Role of every element is known
- Independent control of gene expression levels
- Ability to build and test many variant designs

Refactored gene cluster

•			Т		+	\sim			\square			\langle					
0.09	340		5.23	\sim	0.09	\sim	90		\sim	230		\sim	82		\sim	17	
P7	Rh16	nifH	T8	S130	P5	S131	Rd13	nifD	S454	Rk1	nifK	S455	Ry1	nifY	S456	Re6	nifE

Algorithmic DNA Assembly Pipeline: Key Features

Algorithmic DNA Assembly Pipeline For High-Throughput Plasmid Construction

Proof-of-concept: Biosynthesis of a Natural Product of Unknown Origin

Serofendic Acid has Diverse Therapeutic Potential

Decreases neurological damage from stroke

Nakamura, T et al. (2008) *Eur J Pharmacol* **586**:3288-3293.

Toyota, M et al. (2005) Org Lett 7:3929-3932.

Mini-Library Designed and Built to Screen for Ent-atiserenoic Acid Production

- 8 designs vary according to:
- Promoter strength
- Ribosome binding site strength
- Gene content

Initial Library of Synthetic Gene Clusters Produces *Ent*-atiserenoic Acid & Congeners

www.genscript.com

(A) 6-Electron Oxidation of Methyl Group by P450 Monooxygenase PtnO2

regioselectivity.

(B) Poorly-Tuned Gene Expression Leads to Shunt Metabolite Production

(C) Poorly-Tuned Gene Expression Allows Interference by Non-Pathway Enzymes

Semi-Synthesis of Serofendic Acid and Derivatives

recombinant Streptomyces

- Initial extraction yielded 40 mg / L *ent*-Atiserenoic acid.
- Formal synthesis completed without methylester protecting group
- Semi-synthesis reduced complexity from 17 to 4 steps and increased yield ~10-fold
- Facile derivatization of *ent*-Atiserenoic acid demonstrated

Current Efforts are Focused on Improving Titer Through Multivariate Optimization

Current efforts are focused on improving titer through multivariate optimization

5-level fractional factorial design:

Current Efforts are Focused on Improving Titer Through Multivariate Optimization

Preliminary Results Show Several Improved Strains

Preliminary Results Show Several Improved Strains

Robustness to Varying Expression Levels Will Not Be the Same for Every System

Extending the DNA Assembly Pipeline for New Compound Discovery

27kb

13kb

New analogs of known RiPPs Uncharacterized terpene synthase and modifying enzymes **Risk/Reward** Uncharacterized PKS-NRPS hybrid cluster conserved in many *Streptomyces* Large uncharacterized halogenated non-ribosomal peptide Higher Putative biosynthetic gene cluster with sugar, peptide, and redox enzymes

63kb

Uncharacterized BGCs from Disease-

Suppressive Soil isolates

41kb

41kb

Family of Putative Thiazole-Containing Molecules

Summary: DNA Assembly for Engineering Natural Product Biosynthesis

- Independent control of gene expression is important for hightiter heterologous production
- Developed an algorithmic DNA assembly pipeline compatible with *Streptomyces*
- Demonstrated a new sustainable route to Serofendic acid, a diterpenoid natural product of unknown origin

Collaborators

Linda Kinkel (UMN) Dr. Lindsey Hansen Dr. Zewei Song Dan Schlatter

Funding and Support BTI Biocatalysis Grant UMN Futures Grant Damon Runyon Cancer Research Foundation Joint Genome Institute DARPA

Dr. Maciej Maselko Dr. Christopher Stach **Dr. Dimitri Perusse Suzie Hsu** Stephen Heinsch Carolyn Malecha Matt Zinselmeier

Thomas Hougard Mariela Rivera-DeJesus Blake Everett

GenScript: Your Reliable Research Partner

- Serving life scientists for more than 15 years as a leading CRO (Contract Research Organization) offering a variety of services, reagents and products
- Headquarters in Piscataway, NJ
- Facilities and branches in China, Europe & Japan
- The number one gene synthesis provider in the world
- **30,000** customers in **90+ countries**
- Recipient of **CRO Leadership Award** in productivity and regulatory affairs
- ≥**30,000** journal article citations
- An **iGEM** partner
- The **only commercial entity** invited to participate in the Synthetic Yeast Genome project **(Sc2.0)**
- A member of **GP-write advisory board** due expertise in gene synthesis

Let DNA Building Experts Speed Up Your Metabolic Pathway and Microbial Strain Engineering Process!

Synthetic Biology Portfolio									
Gene Synthesis	DNA Fragments	Combinatorial DNA Libraries							

Fast, Reliable & Efficient

Partnering with Us

Worldwide Leader

Benefiting from 15+ years of expertise in complex DNA synthesis & assembly

Comprehensive Services

Easy access to highly-customizable & high-throughput industrial grade enabling tools

Fast & Efficient

Speed up the build phase of your development cycle with time/cost-efficient options

Make Research Easy

Trusted

Join the long list of leading life scientists in academia & industry who have advanced their synthetic biology projects with us.

Partnering With Us: IP Protection

